Диффузия в жидкости: условия процесса, примеры. Опыты с жидкостями. А вы знаете, как протекает диффузия в жидкостях? Примеры диффузии в окружающем мире

Цели урока:

Обучающие: закрепить знания учеников по заданной теме, научить их понимать и описывать поведение молекул вещества в различных агрегатных состояниях, объяснить значение процесса диффузии в природе и жизни человека.

Воспитательные: продолжить формирование у учащихся способности к научному мышлению.

Образовательные: привить ученикам умение сопоставлять увиденные в природе явления с полученными знаниями о различных физических законах.

Основные термины:

Агрегатное состояние вещества – это состояние вещества, которое можно охарактеризовать набором определенных свойств (например, сохранение или неспособность к сохранению объема, формы и т.д.).

Диффузия

Понятие агрегатного состояния вещества.

Мир, окружающий нас, сложен и изменчив. В то же время, мы способны заметить, что безграничное разнообразие мира – не такое уж и безграничное. Мы часто видим одни и те же вещества в различных состояниях.

Самый простой пример, на котором я смогу доказать правдивость своих слов – это вода. Ее проще всего увидеть в разных состояниях – это пар, или туман, это лед или снег, это жидкость, бегущая из-под крана в кухне. Какими бы ни были особенности воды в той или иной форме, она всегда остается водой – ее состав не меняется. Это все те же 2 молекулы водорода и 1 молекула кислорода .

Если и дальше использовать взятый нами пример, то мы можем проследить, что эти 3 состояния воды зависят от определенных внешних условий. Так, вода замерзает при 0 градусов, превращаясь в лед, и вода закипает при 100 градусах, превращаясь в пар. Вот эта фотография наглядно демонстрирует все 3 состояния воды:

Рис. 1: 3 агрегатные состояния воды

Итак, какие же выводы мы можем сделать, хорошенько подумав о приведенном нами примере? Они будут такими:

Агрегатное состояние вещества – это состояние вещества, которое можно охарактеризовать набором определенных свойств (например, сохранение или неспособность к сохранению объема, формы и т.д.) при определенных условиях.

Не только вода может находиться в трех агрегатных состояниях: твердом, жидком и газообразном. Это присуще всем веществам.

Иногда к трем вышеперечисленным агрегатным состояниям, добавляют еще и четвертое – плазму. О том, как выглядит плазма, вы пожжете получить представление из следующего рисунка:


Рис. 2: плазменная лампа

но о плазме более подробно вы узнаете на уроках физики и химии в старших классах.

Процесс диффузии

Как все мы уже успели узнать, все вещества состоят из мельчайших частичек – ионов, атомов, молекул, которые пребывают в постоянном движении. Именно это движение и становится причиной, по которой возникает процесс диффузии.

Диффузия - это процесс, заключающийся во взаимном проникновении молекул веществ в промежутки между молекулами в других веществах.

Давайте более подробно рассмотрим диффузию в различных агрегатных состояниях.

Диффузия в газах

Давайте вместе приведем примеры процесса диффузии в газах. Варианты проявления этого явления могут быть таковыми:

Распространение запаха цветов;

Слезы из-за нарезания лука;

Шлейф духов, который можно почувствовать в воздухе.

Промежутки между частицами в воздухе довольно большие, частицы двигаются хаотично, поэтому диффузия газообразных веществ происходит достаточно быстро.

Давайте посмотрим видео, демонстрирующее этот процесс:

Диффузия в жидкостях.

Частички веществ в жидкостях, а это чаще всего ионы веществ, взаимодействуют между собой достаточно сильно. В то же время, расстояние между ионами достаточно большое, что позволяет частичкам легко смешиваться.

На следующей видео картинке видно, как проходит процесс диффузии в жидкостях. Частички краски, попадая на поверхность воды, легко диффундируют, то есть – проникают в воду.


Рис. 3: частички краски распространяются в воде.

Этот же процесс, но уже в динамике, вы можете наблюдать на видео на примере растворения кристаллов перманганата калия:

Диффузия в твердых телах.

Твердые тела могут иметь различное строение и состоять из молекул, атомов или ионов . В любом случае, вне зависимости от того, из каких микрочастиц состоит тело, взаимодействие этих частиц друг с другом очень сильно. Не смотря на то, что они, эти частицы, все же движутся, но эти движения очень незначительны. Промежутки между частицами маленькие, поэтому другим веществам трудно проникнуть между ними. Процесс диффузии в твердых телах проходит очень медленно и незаметно для невооруженного глаза.

Давайте посмотрим видео об этом:

Узнав об особенностях протекания процесса диффузии в различных агрегатных состояниях, мы увидели, что процесс не одинаково быстр. От чего же зависит скорость диффузии? Один из ответов на этот вопрос у нас уже есть – скорость протекания процесса диффузии зависит от агрегатного состояния вещества.

Мы с вами также знаем, что частички веществ начинают двигаться быстрее с увеличением температуры. Значит ли это, что и процесс диффузии будет ускоряться при повышении температуры? Ответ очевиден. Для подтверждения давайте просмотрим видео:

Интенсивность диффундирования одного вещества в другое также зависит и от концентрации этих веществ, и от внешних воздействий (например, если просто капнуть раствор йода в воду и если его еще и перемешать, то скорость приобретения раствором однородного цвета будет разной).

Выводы

1.Агрегатное состояние вещества – это состояние вещества, которое можно охарактеризовать набором определенных свойств (например, сохранение или неспособность к сохранению объема, формы и т.д.) при определенных условиях. Не только вода может находиться в трех агрегатных состояниях: твердом, жидком и газообразном. Это присуще всем веществам.

2.Диффузия - это процесс, заключающийся во взаимном проникновении молекул веществ в промежутки между молекулами в других веществах.

3.Скорость диффузии зависит от: температуры, концентрации, внешних воздействий, агрегатного состояния вещества.

Трудно переоценить процесс диффузии в жизни человека. Например, проникновение кислорода через тончайшую стенку альвеол в капилляры легких осуществляется именно благодаря диффузии. Стенки альвеол очень тонкие, с физической точки зрения, альвеолярная стенка – это полупроницаемая мембрана. Концентрация кислорода в атмосферном воздухе гораздо выше его концентрации и капиллярной крови, вот потому кислород и поникает сквозь полупроницаемую мембрану – туда, где его меньше. Благодаря диффузии мы дышим.

Также этот процесс частично обеспечивает проникновение питательных веществ из пищеварительной системы в кровь и действие многих лекарств.

На рисунке схематически показано, как всасываются питательные вещества в кишечнике человека.

Рис. 4: тонкий кишечник млекопитающего

Список литературы

Урок на тему: «Диффузия в газах, жидкостях, твердых телах», автор Селезнева А. М., МОУ СОШ №7 г. Боярка, Киевской обл.

Перышкин А. В. «Физика 7-й класс», Москва, Дрофа, 2006 г.

Родина Н. А., Громов С. В., «Физика», М., Мир, 2002 г.

Отредактировано и выслано Борисенко И.Н .

Над уроком работали:

Водяной пар возникает при кипении воды и при испарении при различной температуре. Для перехода воды в газообразное состояние из окружающей среды поглощается тепло в количестве около 600 ккал/кг. Водяной пар в воздухе не заметен («облака водяного пара» представляют собой парящие в воздухе водяные капли).

В воздухе может находиться лишь определенное количество водяною пара: чем теплее воздух, тем больше возможное содержание водяных паров. Процентное содержание пара в воздухе фактически определяет показатель относительная влажность воздуха. При снижении температуры воздуха и сохраняющемся без изменения содержании водяных паров возрастает относительная влажность воздуха.

Пример: содержание водяных паров в воздухе 125,2 кг/м2.
Температура воздуха:
20°; 125,2:238,5 = 52%
15°; 125,2:173,9 = 72%
10°; 125,2:125,2 = 100%

Если в этом примере и дальше понижать температуру воздуха, то водяные пары конденсируются в жидкость. Температура, при которой относительная влажность воздуха достигает 100%, называется точкой росы смеси воздуха с водяными парами.

Атмосферное давление воздуха 1 ат равно 10000 кг/м2; в смеси воздуха с водяными парами часть давления вызывается водяными парами. Такой показатель целесообразно применять для характеристики содержания водяных паров в воздухе, так как при этом более наглядны возможности диффундирования (0,06 г воды/1 кг воздуха = 1 кг/м2). Поэтому разность в давлении водяных паров (рис, 3) отражает только различное содержание молекул водяных паров при одинаковом полном давлении воздушной смеси; в противоположность этому абсолютная разность давления как в паровом котле (рис. 4), например, в пузырях кровельных ковров.

Различное давление водяных паров может выравниваться за счет диффузии через конструктивные элементы и их слои. Сопротивление диффундированию характеризуется коэффициентом μd (см, м). Если учитывается воздушная прослойка, то коэффициент сопротивления диффузии определяется по таблице «Термическое сопротивление и коэффициенты диффузионного сопротивления строительных материалов».

При диффундировании внутри строительных конструкций возникают участки с пониженным давлением. Аналогично распределению температуры в конструкции распределяется давление в отдельных слоях в соответствии с их долей в общем коэффициенте сопротивления диффундированию. Воздушные прослойки малой толщины (снаружи 0,5, внутри 2 см) можно не учитывать.

Пример.

Внутри 20°/50% = Н 9 кг/м2; снаружи 15°/80% = 14кг/м2. Стена толщиной 24см: μd = 4,5 х 24 = 108 см. Штукатурка изнутри 1,5 см: μd = 6 х 15 = 6 см Разность 119 - 14 = 105кг/м294,7% х 105 = 9,95кг/м25,3% х 105 = 5,5 кг/м2
114 см 100%

Примеры диффузии.

Для предотвращения разрушения строительных конструкций необходимо исключить конденсацию в них влаги. Конденсация возникает там, где фактическое содержание водяных паров угрожает превысить количество, соответствующее температуре. В примерах на рис. 5 -10 конструкция с граничными воздушными слоями представлена в масштабе, пропорциональном их теплоизоляции. Кривая рядом с прямолинейным изменением температуры показывает максимально возможное давление водяных паров.

Для предотвращения разрушений важно учитывать: достаточную теплоизоляцию. В примере (рис. 5) показана однослойная конструкция без конденсации. В примере (рис. 6) возникает конденсат на внутренней стороне конструкции, так как доля граничного воздушного слоя слишком велика. Граничный воздушный слой не должен превышать определенной величины х в сопротивлении теплопередаче 1/к (табл. 2);

правильное расположение слоев. Диффузионная кривая должна иметь внутри по возможности крутой наклон, а снаружи быть плоской (рис. 7). В противном случае возникает конденсация (рис. 8). Уклон характеризуется коэффициентом μd: внутри высокий коэффициент сопротивления диффундированию, хорошая теплопроводность = высокий коэффициент μd; снаружи низкий коэффициент сопротивления диффундированию, плохая теплопроводность = низкий коэффициент μd;

правильное расположение пароизоляции. Если пароизоляционный спой находится снаружи, то там падает давление водяных паров и в результате выпадает конденсат (рис. 9).

Чтобы этого избежать, слой пароизоляции должен располагаться внутри, причём слои, находящиеся перед ним, не должны превышать величины х в суммарном сопротивлении теплопередаче 1/k (табл. 2).

Таблица 1. Давление водяных паров в воздухе.
Температура, ° С Максимальное давление водяных паров, кг/ м2
— 10 26,9
— 5 40,9
0 62,3
5 88,9
10 125,2
15 173,9
20 238,1
25 323
Таблица 2. Максимальная доля граничного воздушного слоя до пароизоляции (х).
Наружная температура, ° С Относительная влажность воздуха, %
50 60 70
— 12 33,5 25 17,8
— 15 30,8 23 16,2
— 18 28,4 21 15
1. Содержание водяных паров в воздухе при различной относительной влажности воздуха.
2. В соответствии с распределением температуры в строительной конструкции проходит кривая максимального содержания водяных паров в воздухе, диффундирующем через конструкцию - кривая давления насыщения.

3. Относительная разность давления пара с двух сторон строительной конструкции.
4. Абсолютная разность давления пара с двух сторон строительной конструкции.

5. Давление водяных паров остаётся ниже максимально возможного - конденсата нет.
6. Граничный воздушный слой слишком велик из-за недостаточной теплоизоляции: конденсат на конструкции и внутри неё: X -максимально допустимая толщина граничного воздушного слоя.

7. Коэффициент, характеризующий расположение слоёв: крутизна кривой снижается к наружной стороне - хорошо.
8. Неправильное расположение слоёв: коэффициент и крутизна кривой растут к наружной стороне, в результате чего внутри конструкции выпадает конденсат.

9. Пароизоляция с холодной стороны: конденсат внутри конструкции.
10. Дополнительная пароизаляция с тёплой стороны предотвращает образование конденсата, X = максимальная теплоизоляция с внутренней стороны пароизоляции.

Эрнст Нойферт. «Строительное проектирование»/ Ernst Neufert «BAUENTWURFSLEHRE»

На рис. 2 представлены основные разновидности диффузии веществ через мембрану.

Диффузия самопроизвольное перемещение вещества из мест с большей их концентрацией в места с меньшей концентрацией вещества вследствие хаотического теплового движения частиц . Диффузия вещества через липидный бислой вызывается градиентом концентрации в мембране. Плотность потока вещества по закону Фика:

Где С М 1 – концентрация вещества в мембране около одной ее поверхности и С М 2 – около другой, l – толщина мембраны.

Так как измерить концентрации С М 1 и С М 2 труд­но, на практике пользуются формулой, связывающей плотность потока вещества через мембрану с концентрациями этого вещества не внутри мембраны, а снаружи в растворах около поверхностей мембраны С 1 и С 2:

(3)

где Р – коэффициент проницаемости.

К – коэффициент распределения показывает, ка­кую часть концентрации у поверхности вне мембраны составляет концентрация у поверхности мемб­раны, но внутри ее.

Подставив (4) в (2), получим:

(5)

Из уравнений (3) и (5) видно, что коэффициент проницаемости:

Этот коэффициент удобен, поскольку имеет размерность линейной скорости (в м/с) и может быть определен по результатам измерения мембранных потенциалов.

Коэффициент проницаемости , как видно из формулы, тем больше, чем больше коэффициент диффузии D, чем тоньше мембрана и чем лучше вещество растворяется в липидной фазе мембраны (чем больше К).

Хорошо растворимы в липидной фазе мембраны неполярные вещества , например: органические и жирные кислоты, эфиры. В то же время плохо проходят через липидный бислой мембраны полярные вещества : вода, неорганические соли, сахара, аминокислоты. Электролиты , слабо растворимые в липидах, не образуют с водой водородных связей, но они обладают водной оболочкой, образующейся в результате электростатических взаимодействий. Размер оболочки прямо пропорционален плотности заряда электролита. Электролиты с большей плотностью заряда обладают большей гидратной оболочкой и, таким образом, меньшей скоростью диффузии. Ионы Na + , например, характеризуются большей плотностью заряда, чем ионы К + . Следовательно, гидратированный Na + имеет больший размер, чем К + , и его скорость пассивной диффузии ниже. Перенос воды происходит через наполненные водой белковые и липидные поры. Однако в последнее время помимо гидрофильных пор проникновение через мембрану мелких полярных молекул связывают с образованием между жирнокислотными хвостами фосфолипидных молекул при их тепловом движении небольших свободных полостей кинков (от англ. kink – петля). Вследствие теплового движения хвостов молекул фосфолипидов кинки могут переме­щаться поперек мембраны и переносить попавшие в них мелкие молекулы, в первую очередь молекулы воды.


Долгое время считалось, что для диффузии воды через клеточные мембраны достаточно ее естественной проницаемости через липидную часть мембран за счет движения кинков. В 1988 г. В лаборатории П. Агре (лауреата Нобелевской премии по химии за 2003 год) были описаны аквапорины – новый класс белков, которые высокоэффективно пропускают молекулы воды, будучи абсолютно непроницаемы не для каких ионов, включая протоны.

В отличие от ионных каналов, аквапорины осуществляют избирательное пропускание воды через мембраны клеток. Аквапорины имеют молекулярную массу ~ 30 кДа и находятся в мембране в виде тетрамеров (рис. 3). Они встречаются в клетках всех живых организмов и играют особенно важную роль в физиологии почек (у человека через них проходит до 170 л воды в сутки). Нарушения работы аквапоринов (например, в случае генетических дефектов этих белков) приводят к тяжелым патологиям.

Рентгеноструктурный анализ аквапорина показал, что его структура сильно отличается от структуры калиевого канала. В мембране формируется очень узкое отверстие , в центре которого имеются два положительных заряда , расположенных на двух симметричных петлях с характерной последовательностью -N-P-A. Прохождение большинства катионов и анионов через данный канал невозможно из-за его малого размера, а протоны не проходят через него из-за наличия положительного заряда.

Через гидрофильные липидные и белковые поры сквозь мембрану проникают молекулы нерастворимых в липидах веществ и водорастворимые гидратированные ионы, окруженные молекулами воды. Для жиронерастворимых веществ и ионов мембрана выступает как молекулярное сито: чем больше размер частицы, тем меньше проницае­мость мембраны для этого вещества. Избирательность переноса обеспечивается набором в мембране пор определенного радиуса, соответствующих размеру проникающей частицы.

Некоторые микроорганизмы синтезируют малые органические молекулы – ионофоры, которые осуществляют челночные перемещения ионов через мембраны. Эти ионофоры содержат гидрофильные центры, которые связывают определенные ионы. По периферии центры окружены гидрофобными областями, что позволяет молекуле легко растворяться в мембране и диффундировать через нее. Существуют и другие ионофоры, подобные хорошо изученному полипептиду грамицидину, которые образуют каналы. Некоторые микробные токсины (например, дифтерийный токсин) и компоненты активированного сывороточного комплемента способны образовывать крупные поры в клеточных мембранах, через которые могут проходить макромолекулы.

Суммируя сказанное, можно сказать, что диффузия веществ определяется следующими факторами :

1) трансмембранным концентрационным градиентом веществ. Растворенные вещества перемещаются в сторону понижения концентрации;

2) трансмембранной разностью электрических потенциалов . Растворенные вещества движутся в сторону раствора с противоположным зарядом;

3) коэффициентом проницаемости мембраны для данного вещества;

4) градиентом гидростатического давления на мембране. При повышении давления будет увеличиваться скорость столкновений молекул и мембраны;

5) температурой . Чем выше температура, тем больше скорость частиц и, следовательно, частота столкновений между частицами и мембраной.

Начнем с того, что жидкость является промежуточным агрегатным состоянием. При критической точке кипения она схожа с газами, а при низких температурах проявляются характеристики, аналогичные твердому телу. У жидкости нет идеальной модели, что существенно усложняет описание ее равновесных термодинамических свойств, температуры замерзания, вязкости, диффузии, теплопроводности, поверхностного натяжения, энтропии, энтальпии.

Определение

Что такое диффузия? Это растекание, распространение, передвижение частиц среды, которое приводит к переносу вещества, установлению равновесных концентраций. При отсутствии внешних воздействий данный процесс определяется тепловым движением частичек. В этом случае процесс диффузии связан с концентрацией прямо пропорциональной зависимостью. Диффузионный поток будет меняться аналогично

Разновидности

Если диффузия в жидкости протекает при изменении температур, ее называют термодиффузией, в электрическом поле - электродиффузией.

Процесс движения частиц больших размеров в жидкости либо газе происходит под законам броуновского движения.

Особенности протекания

Диффузия в газах, жидкостях и твердых телах протекает с разной скоростью. Из-за отличий в характере теплового движения частиц в различных средах, максимальную скорость процесс имеет в газах, а минимальный показатель - в твердых телах.

Траекторией движения частицы является ломаная линия, поскольку периодически меняется направление и скорость. Из-за неупорядоченности движения наблюдается постепенное удаление частицы от первоначального положения. Смещение ее по прямой линии значительно короче того пути, который совершается по ломаной траектории.

Закон Фика

Диффузия в жидкости подчиняется двум законам Фика:

  • плотность диффузионного потока прямо пропорциональна концентрации с коэффициентом диффузии;
  • скорость изменения плотности потока диффузии прямо пропорциональна скорости изменения концентрации и имеет обратное направление.

Диффузия в жидкости характеризуется скачками молекул из одного равновесного положения в другое. Каждый такой скачок наблюдается в случае сообщения энергии молекуле в объеме, достаточном для разрыва связи с другими частицами. скачка не превышает расстояния между молекулами.

Рассуждая над тем, что такое диффузия в жидкости, отметим, что процесс зависит от температуры. При ее повышении происходит «разрыхление» структуры жидкости, в результате чего наблюдается резкое увеличение количества перескоков за единицу времени.

Диффузия в газах, жидкостях и твердых телах имеет некоторые отличительные характеристики. Например, в твердых телах механизм связан с перемещением атомов внутри кристаллической решетки.

Особенности явления

Диффузия в жидкости представляет практический интерес благодаря тому, что он сопровождается выравниванием концентрации вещества в изначально неоднородной среде. С участков, имеющих большую концентрацию, частиц уходит значительно больше.

Эксперименты

Опыты с жидкостями показали, что диффузия имеет особое значение в химической кинетике. Во время протекания на поверхности реагирующих веществ или катализатора данный процесс способствует определению скорости отвода продуктов реакции и добавлению исходных реагентов.

Чем объясняется диффузия в жидкостях? Молекулы растворителя способны проникать через полупрозрачные мембраны, в результате чего возникает осмотическое давление. Это явление нашло применение в химических и физических методах разделения веществ.

Биологические системы

В этом случае модели диффузии можно рассматривать на примере поступления в легкие кислорода воздуха, всасывания из кишечника в кровь продуктов пищеварения, поглощения корневыми волосками минеральных элементов. Диффузия ионов происходит во время генерирования мышечными и нервными клетками биоэлектрических импульсов.

Физическим фактором, который влияет на избирательность накопления в клетках организма определенных элементов, является разная скорость проникновения ионов через мембраны клеток. Этот процесс можно выразить законом Фика, заменив величину коэффициента диффузии показателем проницаемости мембраны, а вместо градиента концентрации использовать разность значений с обеих сторон мембраны. При диффузионном проникновении воды и газов в клетку меняются осмотические показатели давления вне и внутри клетки.

Анализируя, от чего зависит диффузия, отметим, что выделяют несколько видов этого процесса. Простая форма связана со свободным переносом ионов и молекул в сторону градиента их электрохимического потенциала. Например, подобный вариант подходит для тех веществ, у которых молекулы имеют незначительные размеры, например, метиловый спирт, вода.

Ограниченный вариант предполагает слабый перенос вещества. Например, в клетку не способны проникать даже небольшие по размерам частицы.

Страницы истории

Диффузия была открыта во время расцвета древнегреческой культуры. Демокрит и Анаксогор были убеждены в том, что любое вещество состоит из атомов. Разнообразие веществ, распространенных в природе, они объясняли соединениями между собой отдельных атомов. Они допускали, что эти частицы могут смешиваться, образуя новые вещества. Среди основателей молекулярно-кинетической теории, которая объяснила механизм протекания диффузии, особую роль сыграл Михаил Ломоносов. Им было дано определение молекуле, атому, объяснен механизм растворения.

Эксперименты

Опыт с сахаром позволяет понять все особенности диффузии. Если в холодный чай положить кусок сахара, постепенно на дне чашки образуется густой сироп. Он виден невооруженным глазом. Через некоторое время сироп равномерно распределится по всему объему жидкости и перестанет быть виден. Данный процесс протекает самопроизвольно и не предполагает перемешивания компонентов раствора. Аналогично происходит распространение по всему объему комнаты аромата духов.

Приведенные опыты свидетельствуют о том, что диффузия является самопроизвольным процессом проникновения молекул одного вещества в другое. Распространение вещества происходит во все стороны, несмотря на наличие силы тяжести. Подобный процесс является прямым подтверждением постоянного движения молекул вещества.

Так, в приведенном выше примере, осуществляется диффузия молекул сахара и воды, которая сопровождается равномерным распределением молекул органического вещества по всему объему жидкости.

Эксперименты позволяют обнаруживать диффузию не только в жидкостях, но и в газообразных веществах. Например, можно установить на весах емкость с парами эфира. Постепенно чашки придут в равновесие, затем стакан с эфиром окажется тяжелее. В чем причина подобного явления?

С течением времени молекулы эфира смешиваются с частицами воздуха, и в комнате начинает ощущаться специфический запах. В курсе физики средней школы рассматривается эксперимент, в котором учитель растворяет крупинку в воде. Сначала видна четкая траектория движения крупинки, но постепенно весь раствор приобретает равномерный оттенок. На основе проведенного эксперимента педагог объясняет особенности диффузии.

Чтобы выявить факторы, которые влияют на скорость протекания процесса в жидкостях, можно воспользоваться водой разной температуры. В горячей жидкости процесс взаимного перемешивания молекул наблюдается гораздо быстрее, следовательно, существуют прямая зависимость между значением температуры и скоростью протекания диффузии.

Заключение

Опыты, проводимые с газами, жидкостями и позволяют сформулировать законы физики, установить зависимость между отдельными величинами.

Именно в результате экспериментов был установлен механизм взаимного проникновения частиц одного вещества в другое, доказана хаотичность их движения. Опытным путем было выявлено, что быстрее всего происходит диффузия в газообразных веществах. Данный процесс имеет огромное значение для живой природы, используется в науке и технике.

Благодаря этому явлению поддерживается однородный состав земной атмосферы. В противном случае наблюдалось бы расслоение тропосферы на отдельные газообразные вещества, и тяжелый углекислый газ, непригодный для дыхания, находился бы ближе всего к поверхности нашей планеты. К чему бы это привело? Живая природа просто перестала бы существовать.

Велика роль диффузии и в растительном мире. Пышную крону деревьев можно объяснить диффузионным обменом через поверхность листьев. В результате осуществляется не только дыхание, но и питание дерева. В настоящее время в сельском хозяйстве применяется внекорневая подкормка кустарников и деревьев, предполагающая опрыскивание кроны специальными химическими составами.

Именно при диффузии растение из почвы получает питательные вещества. Физиологические процессы, протекающие в живых организмах, также связаны с данным явлением. Например, солевой баланс невозможен без диффузии. Огромное значение подобные процессы играют в снабжении озер и рек кислородом. Газ попадает в глубь водоема именно путем диффузии. Если бы такой процесс отсутствовал, жизнь внутри водоема перестала бы существовать.

Прием лекарственных препаратов, позволяющих человеку защищать себя от возбудителей разных заболеваний и улучшать самочувствие, также основывается на диффузии. Это явление применяется при сварке металлов, получении сахарного сока их свекловичной стружки, приготовлении кондитерских изделий. Сложно найти такую отрасль современной промышленности, где бы не применялась диффузия.